Distillers Dried Grains with Solubles (DDGS) is the major co-product from the corn-based ethanol industry (Bhadra et al., 2008). DDGS are sold to livestock producers as replacements for corn and soybean meal due to their energy and protein concentrations. They are commonly used in swine diets to reduce diet costs and may be included in diets up to 70% based on the price and the stage of production. Although they have benefits to the livestock industry, DDGS are known to have poor flowability. Poor flowability of DDGS can result in handling issues such as unloading trucks and rails cars. While the negative effects associated with poor flowing DDGS are widely understood, the cause of the flowability issues is not. Thus, the objective of this study was to determine whether commercial DDG with solubles had different flowability characteristics than DDG without solubles. For this study, solubles were defined as the condensed distillers solubles originating from thin stillage. Two DDG types were sourced from the same ethanol facility, DDG with solubles (DDGS) and DDG without solubles (NS DDG). Each treatment was divided into three replicates and analyzed for moisture and particle size. Flowability was characterized by measuring critical orifice diameter, bulk and tapped densities, and angle of repose. Results from these tests were then used to calculate the composite flow index, compressibility index, and Hausen ratio. Flow results were classified as good, average, or poor based on the literature. The NS DDG had increased \(P < 0.05 \) moisture and particle size compared to DDG. There were no differences \(P > 0.05 \) between NS DDG and DDG for critical orifice diameter, angle of repose, compressibility index tests, and composite flow index. Both NS DDG and DDGS rated as having a “poor flowability” classification based on angle of repose and composite flow index. In conclusion, the results indicate that DDGS had a decreased product moisture and particle size, though, these differences in product composition and solubles inclusion did not impact flowability measurements. In addition, both the NS DDG and DDGS were classified as having an overall poor flowability.